Math 245B Lecture 11 Notes

Daniel Raban

February 1, 2019

1 Introduction to Norms and Normed Vector Spaces

1.1 Normed vector spaces

First, here is our notation. We will denote $K = \mathbb{R}$ or \mathbb{C} and \mathcal{X} to be a vector space over K. We will denote $Kx = \{\lambda x : \lambda \in K\}$ and 0 as the origin in K or \mathcal{X} . If \mathcal{M}, \mathcal{N} are vect spaces in \mathcal{X} , then we denote $\mathcal{M} + \mathcal{N} = \{x + y : x \in \mathcal{M}, y \in \mathcal{N}\}.$

Definition 1.1. A seminorm on \mathcal{X} is a function $\|\cdot\|: \mathcal{X} \to [0,\infty)$ such that

- 1. $||x+y| \le ||x|| + ||y||$ for all $x, y \in \mathcal{X}$
- 2. $\|\lambda x\| = |\lambda| \|x\|$ for all $x \in \mathcal{X}$ (homogeneous of order 1).

A norm is a seminorm such that $||x|| = 0 \implies x = 0$. A pair $(\mathcal{X}, ||\cdot||)$ is a normed vector space.

The second property of seminorms implies that ||0|| = 0.

Definition 1.2. The norm metric on $(\mathcal{X}, \|\cdot\|)$ is $\rho(x, y) = \|x - y\|$. This generates the norm topology.

This is the kind of definition

Example 1.1. \mathbb{R}^n or \mathbb{C}^n with the Euclidean norm are normed vector spaces.

Example 1.2. The space BC(X, K) with $||f||_u := \sup_{x \in X} |f(x)|$.

Example 1.3. The space $\ell_K^{\infty} = \{(x_n)_{n=1}^{\infty} \in K^{\mathbb{N}} : \sup_n |x_n| < \infty\}$ is a normed vector space with the norm $||x||_{\infty} = \sup_n |x_n|$. This is actually $BC(\mathbb{N}, K)$.

Example 1.4. Let (X, \mathcal{M}, μ) be a measure space. Then $L_K^1(\mu)$, the set of measurable functions $f : X \to K$ such that $||f||_1 = \int |f| d\mu < \infty$, is not a normed vector space. In fact, $|| \cdot ||_1$ is a seminorm, so to get a normed vector space, we need to look at equivalence classes of functions that agree μ -a.e.

Example 1.5. The space $\ell_K^1 = \{(x_n)_n \in K^{\mathbb{N}} : ||x_1|| = \sum_n |x_n| < \infty\}$ is a normed vector space.

Example 1.6. $\ell_K^2 = \{(x_n)_n \in K^{\mathbb{N}} : ||x||_2^2 = \sum_n |x_n|^2 < \infty\}$ is a normed vector space. In fact, if we replace 2 by p for $1 \le p < \infty$, we also get a normed vector space.

1.2 Completeness and convergence

Definition 1.3. A **Banach space** over K is a normed vector space over K which is complete in the norm metric.

All the above examples are Banach spaces.

Example 1.7. Here is an incomplete Banach space.¹ Let $Y = \{x \in \ell_K^1 : \exists n_0 \in \mathbb{N} \text{ s.t. } x_n = 0 \forall n \geq n_0\}.$

Definition 1.4. A series $\sum_{n=1}^{\infty} x_n$ in $(\mathcal{X}, \|\cdot\|)$ is **convergent** if there exists some $x \in \mathcal{X}$ such that $\|x - \sum_{n=1}^{N} x_n\| \to 0$ as $N \to \infty$. It is **absolutely convergent** if $\sum_{n=1}^{\infty} \|x_n\| < \infty$.

Proposition 1.1. A normed space $(\mathcal{X}, \|\cdot\|)$ is complete if and only if every absolutely convergent sequence is convergent.

Proof. (\implies): Assume \mathcal{X} is complete. Let $S_N = \sum_{n=1}^n x_n$. Then for M > N,

$$||S_N - S_m|| = \left\|\sum_{n=N+1}^M x_n\right\| \le \sum_{n=N+1}^M ||x_n|| \xrightarrow{N, M \to \infty} 0.$$

Then S_N is Cauchy, which means it has a limit.

 (\Leftarrow) : Suppose $(x_n)_n$ is Cauchy. Then $||x_n - x_m|| \to 0$ as $n, m \to \infty$. Pick $n_1 < n_2 < \cdots$ such that $||x_n - x_m|| < 2^{i-1}$ for all $n, m \ge n_j$. Define $y_1 = x_{n_1}$ and $y_j = x_{n_j} - x_{n_{j-1}}$ for $j \ge 2$. Note that $\sum_{j=1}^k y_j = x_{n_k}$. Also,

$$\sum_{j=1}^{k} \|y_j\| = \|x_{n_1}\| + \sum_{j=2}^{k} \|x_{n_j} - x_{n_{j-1}}\| \le \|x_{n_1}\| + \sum_{j=2}^{\infty} 2^{-(j-1)} < \infty.$$

So there exists some $x = \lim_{k \to \infty} \sum_{j=1}^{k} y_j = \lim_k x_{n_k}$. Then $x_n \to x$.

Remark 1.1. In this proof, we used a very useful technique: pass to a subsequence to upgrade the convergence to a much faster convergence.

Proposition 1.2. $L_K^1(\mu)$ is complete.

 $^{{}^{1}}$ If you ever wonder whether a property is using the completeness of a Banach space, try seeing if it still holds in this space.

Proof. Assume $(f_j)_j \in L^1_{\mathbb{R}}(\mu)$ such that $\sum_j \int |f_j| d\mu < \infty$. Let $g_N = \sum_{j=1}^N |f_j|$ be nonnegative and increasing in N. By the monotone convergence theorem, there exists some g such that $g = \lim_N g_N, g \ge 0$, and $\int g = \lim_N \int g_N < \infty$. Now if $F_N = \sum_{j=1}^N f_j$, then $|F_N| \le g$. Moreover, $\sum_{j=N}^M |f_j| \le g - g_N \to 0$ whenever $g < \infty$ (which holds a.e.). So $F(x) := \lim_N F_N(x)$ exists for a.e. x.By the dominated convergence theorem, we conclude that $\int F_N d\mu \to \int F d\mu$. Similarly, $|F_N - F| \le 2g$ be the triangle inequality, and $|F_N - F| \to 0$ pointwise. So by the dominated convergence theorem again, $\int |F_N - F| \to \int 0 = 0$.

The case $K = \mathbb{C}$ is similar.

1.3 Norms over finite dimensional vector spaces

Definition 1.5. Two norms $\|\cdot\|$ and $\|\cdot\|'$ are **equivalent** if there exists some $C \in (0, \infty)$ such that $(1/C)\|x\| \le \|x\|' \le C\|x\|$ for all $x \in \mathcal{X}$.

Theorem 1.1. If $\dim(\mathcal{X}) < \infty$, all norms are equivalent.

Proof. We will treat the $K = \mathbb{R}$ case; the $K = \mathbb{C}$ case is similar. It is enough to show this when $\mathcal{X} = \mathbb{R}^n$. Let $|\cdot|$ be the Euclidean norm and $||\cdot||$ be another norm. We will show that $|\cdot||$ and $||\cdot||$ are equivalent.

Let e_1, \ldots, e_n be the standard basis. Then

$$\|x\| = \left\|\sum_{i=1}^{n} x_i e_i\right\| \le \sum_{i=1}^{n} |x_i| \|e_i\| \le \left(\sum_{i} |x_i|^2\right)^{1/2} \left(\sum_{i} \|e_i\|^2\right)^{1/2}$$

by Cauchy-Schwarz. In fact, this shows that $\|\cdot\|$ is continuous.

To finish, it is enough to show that $\inf\{||x|| : |x| = 1\} > 0$. But this infimum is achieved at some x such that |x| = 1. We must still have ||x|| > 0 at this x.

The proof also showed us the following.

Corollary 1.1. $\|\cdot\|$ is continuous for the usual topology on \mathbb{R}^n .