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1 Introduction to Norms and Normed Vector Spaces

1.1 Normed vector spaces

First, here is our notation. We will denote K = R or C and X to be a vector space over
K. We will denote Kx = {λx : λ ∈ K} and 0 as the origin in K or X . If M,N are vect
spaces in X , then we denote M+N = {x+ y : x ∈M, y ∈ N}.

Definition 1.1. A seminorm on X is a function ‖ · ‖ : X → [0,∞) such that

1. ‖x+ y| ≤ ‖x‖+ ‖y‖ for all x, y ∈ X

2. ‖λx‖ = |λ|‖x‖ for all x ∈ X (homogeneous of order 1).

A norm is a seminorm such that ‖x‖ = 0 =⇒ x = 0. A pair (X , ‖ · ‖) is a normed
vector space.

The second property of seminorms implies that ‖0‖ = 0.

Definition 1.2. The norm metric on (X , ‖ · ‖) is ρ(x, y) = ‖x− y‖. This generates the
norm topology.

This is the kind of definition

Example 1.1. Rn or Cn with the Euclidean norm are normed vector spaces.

Example 1.2. The space BC(X,K) with ‖f‖u := supx∈X |f(x)|.

Example 1.3. The space `∞K = {(xn)∞n=1 ∈ KN : supn |xn| <∞} is a normed vector space
with the norm ‖x‖∞ = supn |xn|. This is actually BC(N,K).

Example 1.4. Let (X,M, µ) be a measure space. Then L1
K(µ), the set of measurable

functions f : X → K such that ‖f‖1 =
∫
|f | dµ < ∞, is not a normed vector space. In

fact, ‖ · ‖1 is a seminorm, so to get a normed vector space, we need to look at equivalence
classes of functions that agree µ-a.e.
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Example 1.5. The space `1K = {(xn)n ∈ KN : ‖x1‖ =
∑

n |xn| < ∞} is a normed vector
space.

Example 1.6. `2K = {(xn)n ∈ KN : ‖x‖22 =
∑

n |xn|2 < ∞} is a normed vector space. In
fact, if we replace 2 by p for 1 ≤ p <∞, we also get a normed vector space.

1.2 Completeness and convergence

Definition 1.3. A Banach space over K is a normed vector space over K which is
complete in the norm metric.

All the above examples are Banach spaces.

Example 1.7. Here is an incomplete Banach space.1 Let Y = {x ∈ `1K : ∃n0 ∈ N s.t. xn =
0 ∀n ≥ n0}.

Definition 1.4. A series
∑∞

n=1 xn in (X , ‖ · ‖) is convergent if there exists some x ∈ X
such that ‖x−

∑N
n=1 xn‖ → 0 as N →∞. It is absolutely convergent if

∑∞
n=1 ‖xn‖ <∞.

Proposition 1.1. A normed space (X , ‖ · ‖) is complete if and only if every absolutely
convergent sequence is convergent.

Proof. ( =⇒ ): Assume X is complete. Let SN =
∑n

n=1 xn. Then for M > N ,

‖SN − Sm‖ =

∥∥∥∥∥
M∑

n=N+1

xn

∥∥∥∥∥ ≤
M∑

n=N+1

‖xn‖
N,M→∞−−−−−−→ 0.

Then SN is Cauchy, which means it has a limit.
(⇐= ): Suppose (xn)n is Cauchy. Then ‖xn− xm‖ → 0 as n,m→∞. Pick n1 < n2 <

· · · such taht ‖xn − xm‖ < 2i−1 for all n,m ≥ nj . Define y1 = xn1 and yj = xnj − xnj−1

for j ≥ 2. Note that
∑k

j=1 yj = xnk
. Also,

k∑
j=1

‖yj‖ = ‖xn1‖+
k∑

j=2

‖xnj − xnj−1‖ ≤ ‖xn1‖+

∞∑
j=2

2−(j−1) <∞.

So there exists some x = limk→∞
∑k

j=1 yj = limk xnk
. Then xn → x.

Remark 1.1. In this proof, we used a very useful technique: pass to a subsequence to
upgrade the convergence to a much faster convergence.

Proposition 1.2. L1
K(µ) is complete.

1If you ever wonder whether a property is using the completeness of a Banach space, try seeing if it still
holds in this space.
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Proof. Assume (fj)j ∈ L1
R(µ) such that

∑
j

∫
|fj | dµ < ∞. Let gN =

∑N
j=1 |fj | be non-

negative and increasing in N . By the monotone convergence theorem, there exists some
g such that g = limN gN , g ≥ 0, and

∫
g = lim

∫
gN < ∞. Now if FN =

∑N
j=1 fj ,

then |FN | ≤ g. Moreover,
∑M

j=N |fj | ≤ g − gN → 0 whenever g < ∞ (which holds
a.e.). So F (x) := limN FN (x) exists for a.e. x.By the dominated convergence theorem, we
conclude that

∫
FN dµ →

∫
F dµ. Similarly, |FN − F | ≤ 2g be the triangle inequal-

ity, and |FN − F | → 0 pointwise. So by the dominated convergence theorem again,∫
|FN − F | →

∫
0 = 0.

The case K = C is similar.

1.3 Norms over finite dimensional vector spaces

Definition 1.5. Two norms ‖ · ‖ and ‖ · ‖′ are equivalent if there exists some C ∈ (0,∞)
such that (1/C)‖x‖ ≤ ‖x‖′ ≤ C‖x‖ for all x ∈ X .

Theorem 1.1. If dim(X ) <∞, all norms are equivalent.

Proof. We will treat the K = R case; the K = C case is similar. It is enough to show this
when X = Rn. Let | · | be the Euclidean norm and ‖ · ‖ be another norm. We will show
that | · ‖ and ‖ · ‖ are equivalent.

Let e1, . . . , en be the standard basis. Then

‖x‖ =

∥∥∥∥∥
n∑

i=1

xiei

∥∥∥∥∥ ≤
n∑

i=1

|xi|‖ei‖ ≤

(∑
i

|xi|2
)1/2(∑

i

‖ei‖2
)1/2

by Cauchy-Schwarz. In fact, this shows that ‖ · ‖ is continuous.
To finish, it is enough to show that inf{‖x‖ : |x| = 1} > 0. But this infimum is achieved

at some x such that |x| = 1. We must still have ‖x‖ > 0 at this x.

The proof also showed us the following.

Corollary 1.1. ‖ · ‖ is continuous for the usual topology on Rn.
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